Copied to
clipboard

G = C52⋊D8order 400 = 24·52

The semidirect product of C52 and D8 acting via D8/C2=D4

non-abelian, soluble, monomial

Aliases: C52⋊D8, C2.3D5≀C2, (C5×C10).3D4, C525C83C2, C522D45C2, C526C4.6C22, SmallGroup(400,131)

Series: Derived Chief Lower central Upper central

C1C52C526C4 — C52⋊D8
C1C52C5×C10C526C4C522D4 — C52⋊D8
C52C5×C10C526C4 — C52⋊D8
C1C2

Generators and relations for C52⋊D8
 G = < a,b,c,d | a5=b5=c8=d2=1, ab=ba, cac-1=dbd=a2, dad=cbc-1=b3, dcd=c-1 >

20C2
20C2
2C5
2C5
2C5
10C22
10C22
25C4
2C10
2C10
2C10
4D5
4D5
20C10
20C10
25D4
25D4
25C8
2D10
2D10
10Dic5
10C2×C10
10Dic5
10C2×C10
10Dic5
4C5×D5
4C5×D5
25D8
10C5⋊D4
10C5⋊D4
10C5⋊C8
2D5×C10
2D5×C10

Character table of C52⋊D8

 class 12A2B2C45A5B5C5D5E8A8B10A10B10C10D10E10F10G10H10I10J10K10L10M
 size 11202050444485050444482020202020202020
ρ11111111111111111111111111    trivial
ρ211-11111111-1-111111-11-11-1-111    linear of order 2
ρ311-1-11111111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ4111-1111111-1-1111111-11-111-1-1    linear of order 2
ρ52200-222222002222200000000    orthogonal lifted from D4
ρ62-2000222222-2-2-2-2-2-200000000    orthogonal lifted from D8
ρ72-200022222-22-2-2-2-2-200000000    orthogonal lifted from D8
ρ8440-203+5/23-5/2-1-5-1+5-1003+5/23-5/2-1-5-1+5-101-5/201+5/2001+5/21-5/2    orthogonal lifted from D5≀C2
ρ944-200-1-5-1+53-5/23+5/2-100-1-5-1+53-5/23+5/2-11+5/201-5/201+5/21-5/200    orthogonal lifted from D5≀C2
ρ1044200-1-5-1+53-5/23+5/2-100-1-5-1+53-5/23+5/2-1-1-5/20-1+5/20-1-5/2-1+5/200    orthogonal lifted from D5≀C2
ρ11440203+5/23-5/2-1-5-1+5-1003+5/23-5/2-1-5-1+5-10-1+5/20-1-5/200-1-5/2-1+5/2    orthogonal lifted from D5≀C2
ρ1244-200-1+5-1-53+5/23-5/2-100-1+5-1-53+5/23-5/2-11-5/201+5/201-5/21+5/200    orthogonal lifted from D5≀C2
ρ13440203-5/23+5/2-1+5-1-5-1003-5/23+5/2-1+5-1-5-10-1-5/20-1+5/200-1+5/2-1-5/2    orthogonal lifted from D5≀C2
ρ14440-203-5/23+5/2-1+5-1-5-1003-5/23+5/2-1+5-1-5-101+5/201-5/2001-5/21+5/2    orthogonal lifted from D5≀C2
ρ1544200-1+5-1-53+5/23-5/2-100-1+5-1-53+5/23-5/2-1-1+5/20-1-5/20-1+5/2-1-5/200    orthogonal lifted from D5≀C2
ρ164-4000-1-5-1+53-5/23+5/2-1001+51-5-3+5/2-3-5/21ζ53520ζ5450535254500    complex faithful
ρ174-40003-5/23+5/2-1+5-1-5-100-3+5/2-3-5/21-51+510ζ53520ζ545005455352    complex faithful
ρ184-4000-1+5-1-53+5/23-5/2-1001-51+5-3-5/2-3+5/215450ζ53520ζ545535200    complex faithful
ρ194-4000-1-5-1+53-5/23+5/2-1001+51-5-3+5/2-3-5/21535205450ζ5352ζ54500    complex faithful
ρ204-40003+5/23-5/2-1-5-1+5-100-3-5/2-3+5/21+51-510ζ5450535200ζ5352545    complex faithful
ρ214-40003+5/23-5/2-1-5-1+5-100-3-5/2-3+5/21+51-5105450ζ5352005352ζ545    complex faithful
ρ224-4000-1+5-1-53+5/23-5/2-1001-51+5-3-5/2-3+5/21ζ545053520545ζ535200    complex faithful
ρ234-40003-5/23+5/2-1+5-1-5-100-3+5/2-3-5/21-51+5105352054500ζ545ζ5352    complex faithful
ρ2488000-2-2-2-2300-2-2-2-2300000000    orthogonal lifted from D5≀C2
ρ258-8000-2-2-2-23002222-300000000    symplectic faithful, Schur index 2

Smallest permutation representation of C52⋊D8
On 40 points
Generators in S40
(1 33 18 9 30)(2 19 31 34 10)(3 32 11 20 35)(4 12 36 25 21)(5 37 22 13 26)(6 23 27 38 14)(7 28 15 24 39)(8 16 40 29 17)
(1 18 30 33 9)(2 34 19 10 31)(3 11 35 32 20)(4 25 12 21 36)(5 22 26 37 13)(6 38 23 14 27)(7 15 39 28 24)(8 29 16 17 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(2 8)(3 7)(4 6)(10 16)(11 15)(12 14)(17 19)(20 24)(21 23)(25 27)(28 32)(29 31)(34 40)(35 39)(36 38)

G:=sub<Sym(40)| (1,33,18,9,30)(2,19,31,34,10)(3,32,11,20,35)(4,12,36,25,21)(5,37,22,13,26)(6,23,27,38,14)(7,28,15,24,39)(8,16,40,29,17), (1,18,30,33,9)(2,34,19,10,31)(3,11,35,32,20)(4,25,12,21,36)(5,22,26,37,13)(6,38,23,14,27)(7,15,39,28,24)(8,29,16,17,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,19)(20,24)(21,23)(25,27)(28,32)(29,31)(34,40)(35,39)(36,38)>;

G:=Group( (1,33,18,9,30)(2,19,31,34,10)(3,32,11,20,35)(4,12,36,25,21)(5,37,22,13,26)(6,23,27,38,14)(7,28,15,24,39)(8,16,40,29,17), (1,18,30,33,9)(2,34,19,10,31)(3,11,35,32,20)(4,25,12,21,36)(5,22,26,37,13)(6,38,23,14,27)(7,15,39,28,24)(8,29,16,17,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,19)(20,24)(21,23)(25,27)(28,32)(29,31)(34,40)(35,39)(36,38) );

G=PermutationGroup([[(1,33,18,9,30),(2,19,31,34,10),(3,32,11,20,35),(4,12,36,25,21),(5,37,22,13,26),(6,23,27,38,14),(7,28,15,24,39),(8,16,40,29,17)], [(1,18,30,33,9),(2,34,19,10,31),(3,11,35,32,20),(4,25,12,21,36),(5,22,26,37,13),(6,38,23,14,27),(7,15,39,28,24),(8,29,16,17,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(2,8),(3,7),(4,6),(10,16),(11,15),(12,14),(17,19),(20,24),(21,23),(25,27),(28,32),(29,31),(34,40),(35,39),(36,38)]])

Matrix representation of C52⋊D8 in GL4(𝔽41) generated by

16000
01800
00100
00037
,
10000
03700
00160
00018
,
0001
0010
1000
04000
,
1000
04000
0001
0010
G:=sub<GL(4,GF(41))| [16,0,0,0,0,18,0,0,0,0,10,0,0,0,0,37],[10,0,0,0,0,37,0,0,0,0,16,0,0,0,0,18],[0,0,1,0,0,0,0,40,0,1,0,0,1,0,0,0],[1,0,0,0,0,40,0,0,0,0,0,1,0,0,1,0] >;

C52⋊D8 in GAP, Magma, Sage, TeX

C_5^2\rtimes D_8
% in TeX

G:=Group("C5^2:D8");
// GroupNames label

G:=SmallGroup(400,131);
// by ID

G=gap.SmallGroup(400,131);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,5,73,218,116,50,7204,1210,496,1157,299,2897]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^8=d^2=1,a*b=b*a,c*a*c^-1=d*b*d=a^2,d*a*d=c*b*c^-1=b^3,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C52⋊D8 in TeX
Character table of C52⋊D8 in TeX

׿
×
𝔽